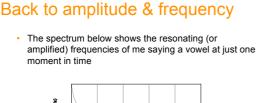


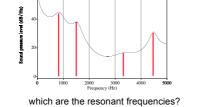
The source-filter method

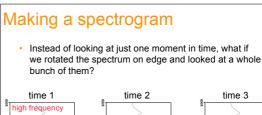
- Waves generated by vibrating vocal folds can get even more complicated!
- And the vocal tract is a very complex tube
- · Depending on the shape of our vocal tract
 - some frequencies of periodic waves will be amplified
 - other frequencies will be damped

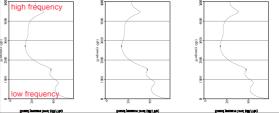
the vocal tract acts as "filter" - it picks out certain parts of the "source" sound from our vibrating vocal folds and makes them more prominent

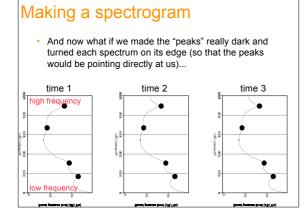
More about amplitude

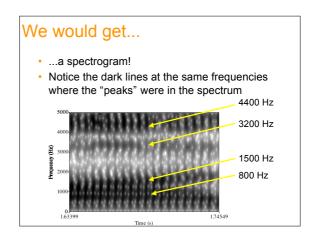

- · Measured in deciBels (dB)
- Not an absolute value, but a ratio
- 1 dB =
 - 10 times the log of the ratio of 2 sounds' intensities
- Example
 - if sound A is 30 dB louder than sound B,
 - 10 times the log of the ratio = 30
 - the log of the ratio = 3 (because $10 \times 3 = 30$)
 - so the ratio of sound A to sound B is $10^3 \div 1$
 - 10³ = 1000 (a 1 followed by 3 zeros)
 - so sound A is 1000 times louder than sound B !

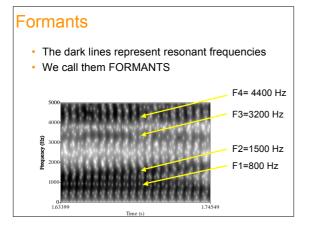

Another example of deciBels

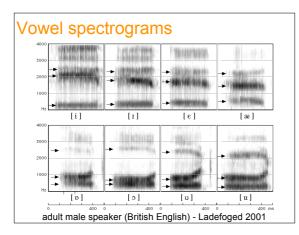

• We use a log scale is because the differences between sounds can get REALLY big:

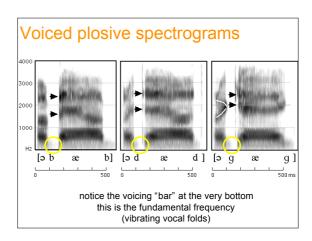

- if sound A is 120 dB louder than sound B,
- 10 times the log of the ratio = 120
- the log of the ratio = 12 (10 x 12 = 120)
- so the ratio of sound A to sound B is 10¹²: 1
 10¹² = 1,000,000,000,000 (a 1 followed by 12 zeros)
- so sound A is <u>a million million</u> times louder than sound B !

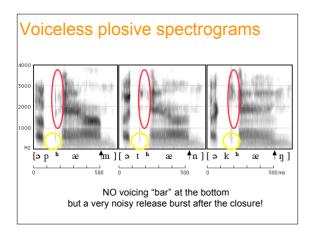

dB scale of common sounds				
	Intensity (dB)	Sound	naximum volume of your ipe	od
(130	4-engined jet aircraft, 120 ft away		
	120	threshold of pain; pneumati	c hammer 3 ft away	
	110	boilermakers' shop, 'rock' band		
	100	car horn 15 ft away; symph	onv orchestra fortissimo	
	90		routine exposure to over	
	80	noisy tube train; loud radio	85 dB can produce	
	70	telephone bell, 10 ft away	hearing loss over time	
	60	conversation, 3 ft away; car	; 30 ft away	
	50	quiet office		
	40	residential area, no traffic; subdued conversation		
	30	quiet garden; whispered conversation		
	20	ticking of watch; broadcast studio		
	10	rustle of leaves		

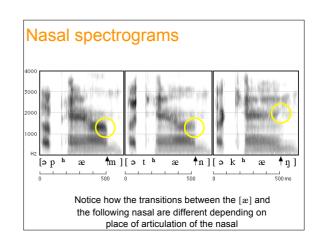


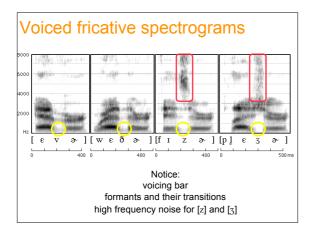


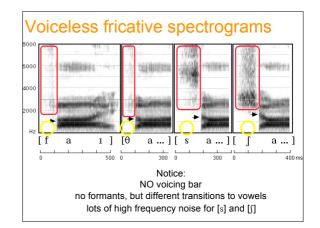


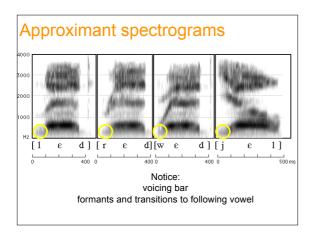


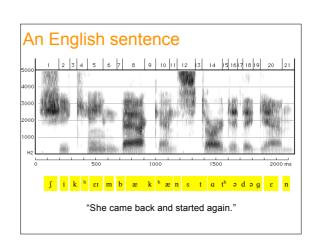



- Phoneticians use speech spectrograms to look at sounds
- Different speech sounds will have different spectrograms
 - because the shape of the vocal tract will be different for various speech sounds
 so the frequencies that are allowed to "resonate" (or be
 - amplified) will be different
- Some sounds will have formants, others won't


 vowels and sonorant consonants (i.e., periodic sounds) will
 have formants
 - noisy consonants like plosives and fricatives will not







References

Spectrograms from:

Ladefoged, Peter. 2000. A Course in Phonetics (5th Ed.). Thomson/Wadsworth

Also available at the UCLA Phonetics Lab Data site at:

http://www.phonetics.ucla.edu/course/chapter8/figure8.html

Practice with Praat

- Reading files
- · Opening files in the editing window
- · Zooming in and out
- Showing the spectrogram
- Selecting parts of the waveform/spectrogram
- · Extracting and drawing parts of a sound

We're done!!

See you all next week.

Same bat time.

Same bat channel.