Sounds of English

Topic 7
The acoustics of speech:
Sound Waves

Ever done "the wave" ??

- At a stadium, a "people wave" travels through the crowd of spectators
- But the people don't move with the wave!

Why do we care?

- Linguistic forms are encoded in patterns of vibration (called waveforms)
- Vibrating patterns are the basis of ALL sound
- Obviously, it gets much more complicated than this, but we need to start somewhere!

So let's start with a tuning fork and a yo-yo.
(No, l'm not kidding.)

About waves

- Lots of examples in the world around us!
- Can take all sorts of different forms
- Definition:
- A disturbance that travels through a medium
- where the "disturbance" is the oscillation of particles
- and the "medium" is the material made up of those particles (air, water, steel are all examples)

Different types of waves

Transverse
particles "move" at
right angles to
direction of wave, as
in waves at a beach
or at a stadium

- Longitudinal
particles "move" in the same direction as the wave
sound waves are
longitudinal waves

Tuning forks and pendulums

- Exhibit a very basic sort of movement called Simple Harmonic Motion

Remember making graphs?

- We can graph the motion of the yo-yo pendulum or the tuning fork tine.

...and the result is a sine wave

Characteristics of waves

- Frequency is the number of cycles per second
- Period is the number of seconds needed to complete one cycle (1 / Freq)
- Amplitude is the maximum displacement

Measuring a wave's frequency

How many cycles per second (Hz) ?
Answer: 1 cycle every 4 milliseconds 1000 milliseconds in 1 second so how many times can we fit 4 into 1000?

More about sine waves

Measuring a wave's period

How long does it take to complete one cycle of this wave?

Measuring a wave's amplitude
What is the amplitude of this wave?
Answer: 1

Frequency and amplitude

```
- Frequency - Pitch
    physical measurement = - perception of frequency
    of wave velocity
```

- Amplitude . Volume (loudness)
physical measurement $=$ - perception of amplitude of maximum
displacement

Practice with sine waves

Calculate the period, frequency, and amplitude
P = 2 ms
$F=1$ cycle every 2 ms , so $1000 / 2=500 \mathrm{~Hz}$ Amp $=4$

Practice with sine waves
Calculate the frequency, period, and amplitude
$\mathbf{P}=3 \mathrm{~ms}$
$F=1$ cycle every 3 ms , so $1000 / 3=333 \mathrm{~Hz}$ Amp $=2$

Simple versus complex waves

- 3 simple waves can combine (actually add together)...
they differ in frequency and amplitude, are SIMPLE:
- produced by simple harmonic motion
result in a pure tone (such as A-440)
- But there are complex waves too!
- produced by adding together two or more simple waves
- Fourier: "every complex wave can be decomposed into some combination of simple waves"
- these are the types of waves we will see in speech

[^0]

Which wave has the LOWEST frequency? The one where $P=.010 \mathrm{~s}$, so $\mathrm{f}=1 / .010=100 \mathrm{~Hz}$

Simple versus complex waves

- ...to make this complex wave!
pattern repeats: each cycle is more complicated than the simple patterns
- frequency is the same as lowest component frequency!

Periodic versus aperiodic

- If a pattern repeats, a sound wave is periodic
- This shows 5 cycles of me saying the vowel [a], a very "resonant" sound

Waveforms in speech

- The different types of sounds we've learned about have different acoustic characteristics
- So waveforms will look different for..
- Silence or closure during a voiceless plosive
- Vowels, nasals, and approximants
- Voiced fricatives
- Voiceless fricatives
- Release bursts after voiceless plosives

Frequency of complex waves

- If there's a repeating pattern, we can calculate the period and frequency the same way

$\mathrm{P}=10 \mathrm{~ms}=.010 \mathrm{~s}$

$f=1 / .010 \mathrm{~s}$, so $1 / .010=100 \mathrm{~Hz}$

Aperiodic $=$ NOISY!

- If a pattern doesn't repeat, a sound wave is aperiodic
- This shows me saying the consonant [\int], a very "noisy" sound

Voiceless plosives - closure

- This is a waveform of me saying /apa/
- Where is the closure during the /p/ ?

Periodic sounds - nasals

- This is a waveform of me saying /n/
- Notice the repeating pattern ?

Voiced fricatives

- This is a waveform of me saying /z/
- It's periodic AND aperiodic!

Voiceless plosives-release burst

- This is the same waveform of me saying /apa/
- Note the noisy "burst" after the closure period

Periodic sounds - approximants

- This is a waveform of me saying /l/

There's a repeating pattern here too

Voiceless fricatives

- This is a waveform of me saying / $\mathrm{g} /$
- There's NO repeating pattern

Burst duration = voice onset time

- We can measure this really precisely!!

Measuring VOT

- Time between "release" and beginning of voicing for the vowel =
.05 seconds, or 50 milliseconds

Fundamental frequency

- Lowest component frequency of a complex wave
\# of times per second that vocal folds vibrate
- 110 Hz for men, 200 Hz for women, 300 Hz for children, and about 580 Hz for my cat Stoli:

Measuring fundamental frequency

- 10 cycles of me saying the vowel /a/
- duration per cycle (period) $=.005$ seconds
- Frequency $=1 / \mathrm{P}=1 / .005=200 \mathrm{~Hz}$

Now it's your turn...

- We'll make recordings of each of your words for your phonetic notebook
- (I'll upload these to WebCT later)

We're done!!
 See you all next week.
 Same bat time.
 Same bat channel.

[^0]: Frequency of a complex wave will be the same as the LOWEST frequency of its component waves

